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Major Issues in 
Supernova Physics

● How does the “engine” 
work?

● What can we observe?
● Neutrinos
● Gravitational waves (?)
● Ejecta morphology
● Pulsar kicks
● Nucleosynthesis yields



  

Modelling Core-Collapse 
Supernovae

● Complex interplay of:
● Neutrino transport
● Muti-D hydrodynamic
● Strong-field gravity (general 

relativity)
● Nuclear & particle physics

● Various approaches around:
● “Self-consistent” models, i.e. with 

energy-dependent transport 
(Boltzmann/variable Eddington 
factor/diffusion/IDSA, see also prec. 
talks)

● More or less severely parametrized 
models (e.g. simplified neutrino 
transport, inner boundary instead of 
neutron star surface,...)

Hydrodynamic instabilities in 
core-collapse supernovae: 

convection & SASI



  

The Garching Approach to Neutrino 
Transport in Core-Collapse SNe

● Current status: multi-dimensional (2D) GR hydro and energy-dependent 
neutrino transport for core-collapse supernovae combined for the first 
time (best so far: modified gravitational potential + transport)

● Hydro and metric: CoCoNuT code (Dimmelmeier et al. 2002)

● HRSC scheme with PPM reconstruction, HLLC solver

● Metric in xCFC approximation (Cordero-Carrión et al. 2009, very accurate for 
core collapse case), but extendible to maximally constrained formulation of 
the field equations (Bonazzola et al. 2004, Cordero-Carrión 2010)

● Graviational extraction modified with quadrupole formula at the moment
● Neutrino transport: based on VERTEX code (Rampp et al. 2002)

● Energy-dependent GR transport with variable Eddington factor method and 
ray-by-ray-plus method for multi-dimensional case

● Up-to-date set of interaction rates



  

K, L needed from model Botzmann eq.

C from solution of moment eqs.

Neutrino microphysics in
collision integral

Neutrino moment equations

Simplified (model) Boltzmann equation



  

Current Results

● GR explosion models for 11.2M8 and 15M8 
progenitors, evolved several 100ms into the 
explosion

● Questions to be addressed:
● Neutrino & gravitational wave signal for different 

phases (accretion, explosion)
● Influence of GR on these observables (e.g. typical 

frequencies of gravitational waves & neutrino 
luminosity fluctuations)

● Heating conditions in GR (may help somewhat for 
the explosion for more massive progenitors)
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Translating the dynamics into the -signal

hemispheric
variation

accretion 
slowly 

subsiding new downflows 
developing

11.2M8



  

Translating the dynamics into the -signal

continued accretion → 
high electron 

(anti-)neutrino in post-
explosion phase

large emission 
anisotropy (polar 

downflow)

15M8



  

Neutrinos from 2D Explosion Models
● Summary of conspicuous features

● SASI-induced oscillatory anisotropies 
as in Newtonian case (frequency 
50...100Hz → SASI frequencies), cp. 
Ott et al. (2008), Marek et al. (2009), 
Lund et al. (2010), Brandt et al. 
(2011) for fluctuations

● High e and anti-e luminosities after 
the onset of the explosion for more 
massive progenitor → 
nucleosynthesis

● Large (10..20% ) emission anisotropy 
for strongly asymmetric explosion

● Perspectives for non-linear flavour 
oscillation? Viability for early 
phase doubtful according to recent 
studies (Dasgupta et al. 2011, 
Chakraborty et al. 2011) 

Neutrino mean energy & luminosity at 
gain radius: GR vs. Newtonian 

approximation (cp. Bruenn et al. 2001)

GR

Neutrinos from 2D Explosion Models

Newtonian
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Chakraborty et al. 2011) 

Density anisotropy for 15M8model, 
775ms after bounce

Neutrinos from 2D Explosion Models



  Accretion phase similar to Dasgupta et al. (2011), 
early post-explosion phase appears post promising

net electron 
number density

~number density 
difference between 
neutrino flavours

11.2M8

15M8



  

Gravitational Wave 
Signal

● Signal exhibits features familiar 
from simulations with 
Newtonian hydro (e.g. Marek et 
al. 2009, Murphy et al. 2009, 
Yakunin et al. 2010):

● Prompt convection signal

● Stochastic hot-bubble signal with 
shifting frequency peak

● “tail” during explosion

● Amplitudes also similar

● What about the typical 
frequencies?

prompt convection 
& SASI

“hot bubble” 
convection

proto-neutron star 
convection

anisotropic -
emission

aspherical shock 
expansion

11.2M8

15M8



  

Gravitational Wave 
Signal

● Signal exhibits features familiar 
from simulations with 
Newtonian hydro (e.g. Marek et 
al. 2009, Murphy et al. 2009, 
Yakunin et al. 2010):

● Prompt convection signal

● Stochastic hot-bubble signal with 
shifting frequency peak

● “tail” during explosion

● Amplitudes also similar

● What about the typical 
frequencies?

Spectral energy distribution for 
different time intervals, 15M8model

prompt convection

proto-neutron star 
convection



  

Gravitational Wave 
Signal

● Frequency most sensitive to 
GR effects

● Huge differences compared to 
Newtonian case:

● PNS convection: +60...70%

● Hot bubble convection: 
+20...50%

● Simulations with effective 
gravitational potential closer to 
GR, but no perfect match

● Influence of GR comparable to 
or larger than that of the EoS

● Strong sensitivity to the 
transport treatment (cooling 
region!), cp. frequencies of 
Murphy et al. (2009)

Soft vs. stiff 
equation of state

GR

Newtonian

Newtonian+
effective potential

Spectrum for the first 0.5s, 
15M8model
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What About 3D Effects?

pure hydro

● Explosion geometry & 
strength of anisotropies  
dependent on dimensionality

● 3D modelling indispensable, 
but simulation to ≈1s with full 
transport not available yet

● Simpler, parametrized 
schemes as an avenues 
towards exploratory studies 
(observables, explosion 
mechanism)



  

 Neutrino & Matter Anisotropies in 3D

E.Müller, Janka & Wongwathanarat (submitted)

 Signal for given 
observer direction,

different progenitors

Neutrino flux asymmetry



  

Gravitational Wave Signal

● Luminosity fluctuations less 
pronounced than in 2D

● Gravitational wave strain also 
somewhat smaller

● Not a final answer (model 
limitations)

proto-neutron star 
convection

SASI+hot bubble 
convection

Gravitational wave amplitude, 
15M8 model

Normalized spectrogram, 15M8 model



  

Outlook

Nordhaus et al. (2010) Hanke et al., in prep.

● Non-spherical motion of matter & anisotropic neutrino emission 
intimately tied to model dynamics (time of explosion, strength of 
SASI & convection)

● SASI (presence of sloshing or spiral mode) & convection in turn 
possibly strongly dependent on heating conditions, neutron star 
compactness, etc.

● Impact of dimensionality (3D vs. 2D) not yet well understood
● Self-consistent 3D simulations required!

“Critical” luminosity for explosion
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