Neutrinos and Supernova Nucleosynthesis

Rebecca Surman Union College

> HAvSE 2011 19-23 July 2011

the astrophysical formation of the elements

R Surman, Union College

heavy element synthesis

R Surman, Union College

v-rich environments for heavy element synthesis

v-rich environments for heavy element synthesis jet (?) shock nucleosynthesis nucleosynthesis outflow ν PNS BH ν accretion disk neutrino scattering nuclear physics nuclear physics and emission of core of disk

(1) free neutrons and protons

$$p + e^{-} \Leftrightarrow n + v_{e}$$

$$n + e^+ \Leftrightarrow p + \overline{v}_e$$

(2) assembly of alpha particles

 $p, n \rightarrow \alpha$'s + excess p or n

(3) assembly of seed nuclei

 α 's + excess *p* or *n* \rightarrow iron peak nuclei + remaining *p* or *n*

(4) free nucleon capture on seeds

iron peak nuclei + remaining *p* or $n \rightarrow$ heavy nuclei

(1) free neutrons and protons

 $p + e^- \Leftrightarrow n + v_e$ v can set the neutron to proton ratio, n/p $n + e^+ \Leftrightarrow p + \overline{v}_e$ n/p determines the subsequent nucleosynthesis

(2) assembly of alpha particles

 $p, n \rightarrow \alpha$'s + excess p or n

(3) assembly of seed nuclei

 α 's + excess p or $n \rightarrow$ iron peak nuclei + remaining p or n

(4) free nucleon capture on seeds

iron peak nuclei + remaining p or $n \rightarrow$ heavy nuclei

stages of heavy element synthesis | impact of ν

(1) free neutrons and protons	
$p + e^{-} \Leftrightarrow n + v_{e}$	
$n + e^+ \iff p + \overline{v}_e$	
(2) assembly of alpha particles	v can continue to convert the excess p or n
$p, n \rightarrow \alpha$'s + excess p or n	this alters the free nucleons available for capture onto seeds
(3) assembly of seed nuclei	
α 's + excess <i>p</i> or <i>n</i> \rightarrow iron peak nuclei + remaining <i>p</i> or <i>n</i>	
(4) free nucleon capture on seeds	
iron peak nuclei + remaining p or $n \rightarrow$ heavy nuclei	

the early supernova neutrino-driven wind

 $p, n \rightarrow \alpha, p \rightarrow \text{seed nuclei} + p \rightarrow vp \text{ process}$

the late-time supernova neutrino-driven wind

 $p, n \rightarrow \alpha, n \rightarrow \text{seed nuclei} + n \rightarrow r \text{ process}$

Initial studies were very promising....

e.g., Meyer et al (1992), Woosley et al (1994)

...but it was found to be more difficult to produce the requisite conditions than first thought

e.g., Takahashi et al (1994), Witti et al (1994), Fuller & Meyer (1995), McLaughlin et al (1996), Meyer et al (1998), Qian & Woosley (1996), Hoffman et al (1997), Otsuki et al (2000), Thompson et al (2001), Terasawa et al (2002), Liebendorfer et al (2005), Wanajo

(2006), Arcones et al (2007), etc., etc.

Initial studies were very promising....

e.g., Meyer et al (1992), Woosley et al (1994)

...but it was found to be more difficult to produce the requisite conditions than first thought

e.g., Takahashi et al (1994), Witti et al (1994), Fuller & Meyer (1995), McLaughlin et al (1996), Meyer et al (1998), Qian & Woosley (1996), Hoffman et al (1997), Otsuki et al (2000), Thompson et al (2001), Terasawa et al (2002), Liebendorfer et al (2005), Wanajo (2006), Arcones et al (2007), etc., etc.

The most recent calculations of proto-neutron star evolution predict no robustly neutron-rich outflows

Huedepohl et al (2010), Fischer et al (2010)

neutrino oscillations and the *r* process

McLaughlin and Surman (2007)

Hydrodynamic conditions required to build the heaviest nuclei are difficult to achieve, in part due to the neutrino-induced alpha effect.

In the standard SNe energy heirarchy, neutrino oscillations only enhance the role of neutrinos.

$$\left\langle E_{v_x}\right\rangle \ge \left\langle E_{\bar{v}_e}\right\rangle > \left\langle E_{v_e}\right\rangle$$

While standard MSW oscillations occur at densities too low to influence the *r* process, neutrino self interactions can cause neutrinos to flavor transform much closer to the PNS see, e.g., the work of *Pantaleone, Samuel, Qian and Fuller, Balantenkin and Yuksel, Dasgupta, Dighe, Raffelt, Lisi, Mirizzi, Volpe, etc.*

R Surman, Union College

where does each nucleosynthesis stage take place?

v oscillation calculation by Huaiyu Duan and Alex Friedland (as in hep-ph/10062359)

a full neutrino oscillation + *r*-process calculation

Duan, Friedland, McLaughlin, & Surman, J Phys G, 38, 035201 (2011)

collective oscillations and supernova nucleosynthesis

Supernova nucleosynthesis calculations cannot (safely) ignore neutrino oscillations

- \Rightarrow act only increase the importance of neutrino interactions
- \Rightarrow important for *vp* process as well as the *r* process

Martinez-Pinedo et al (2011)

Correctly predicting the radius at which the flavor transformations occur is of key importance for the nucleosynthesis - this requires a multiangle v oscillation calculation

black hole accretion disk (AD-BH) outflows

The AD-BH can be produced by:

• stellar collapse

Woosley (1993), Paczynski (1993), MacFadyen and Woosley (1999)

• compact object merger

Paczynski (1986), Eichler et al (1989), Janka et al (1999), Rosswog & Leibendoerfer (2003)

The nucleosynthesis produced in baryon-rich outflows from the AD-BH is in a large part determined by the neutrino emission from the disk

AD-BH disk outflows have been studied in, e.g.,

Pruet, Thompson, & Hoffman (2004), Surman & McLaughlin (2004), Surman, McLaughlin, & Hix (2006), Metzger, Thompson, & Quataert (2008), Nakamura et al (2011)

nucleosynthesis from low \dot{m} AD-BHs: ⁵⁶Ni

nucleosynthesis from low \dot{m} AD-BHs: vp process

Disk model from Chen and Beloborodov (2008), neutrino decoupling surface calculation by R Surman

AD-BH neutrino decoupling surfaces

R Surman, Union College

AD-BH neutrino decoupling surfaces

R Surman, Union College

AD-BH neutrino decoupling surfaces

R Surman, Union College

nucleosynthesis from high \dot{m} AD-BHs: r process

general relativistic effects in the neutrino spectra

Caballero, McLaughlin, and Surman, arXiv:1105.6371 (2011)

general relativistic effects in the neutrino spectra

general relativistic effects in the neutrino spectra

Neutrino reactions on nucleons play a key role in the primary synthesis of heavy elements in extreme astrophysical environments

They:

 \Rightarrow influence the initial neutron-to-proton ratio

 \Rightarrow determine the composition of free nucleons available for capture on seeds

A careful treatment of the neutrino physics – including oscillations and general relativistic effects – is therefore essential to accurately predict supernova nucleosynthetic outcomes