

Microphysics of Supernova Core

M. Liebendörfer University of Basel

- Matter and neutrinos in the collapse phase
- Matter and neutrinos in the postbounce phase
- New 3D models of 11 Ms, 15 Ms and 40 Ms progenitor

R. Cabezon M. Hempel R. Käppeli A. Perego F.-K. Thielemann N. Vasset S. C. Whitehouse

The Explosion Mechanism(s)

Keep in mind: The explosion is only a surface effect on the protoneutron star!

Different supernova explosion mechanisms suggested:

- prompt hydrodynamic
- delayed, v-driven
- magneto-rotational
- acoustic
- magetoviscous/sonic
- phase transition in NS

The Explosion Mechanism(s)

Keep in mind: The explosion is only a surface effect on the protoneutron star!

Different supernova explosion mechanisms suggested:

- prompt hydrodynamic (e.g. Baron et al. 1985)
- delayed, v-driven (Colgate 1966, Bond 1979,... Marek & Janka 2009)
- magneto-rotational (Bisnovatyi-Kogan 1976, Leblanc & Wilson 1979, ...)
- acoustic (Burrows et al. 2006)
- magetoviscous/sonic (Akiyama et al. 2003, Thompson et al. 2003, Socrates et al. 2005)
- phase transition in NS (Migdal et al. 1971, ... Sagert et al. 2009)

The Explosion Mechanism(s)

Keep in mind: The explosion is only a surface effect on the protoneutron star!

Different supernova explosion mechanisms suggested:

- prompt hydrodynamic (e.g. Baron et al. 1985)
- delayed, v-driven (Colgate 1966, Bond 1979,... Marek & Janka 2009)
- magneto-rotational (Bisnovatyi-Kogan 1976, Leblanc & Wilson 1979, ...)
- acoustic (Burrows et al. 2006)
- magetoviscous/sonic (Akiyama et al. 2003, Thompson et al. 2003, Socrates et al. 2005)
- phase transition in NS (Migdal et al. 1971, ... Sagert et al. 2009)

Matter conditions

Ensemble of nuclei Cool bulk

nuclear matter

Hot dissociated matter

Freeze-out of nuclei

collapse phase || postbounce accretion phase | explosion phase bounce

Neutrino-matter interactions

Bruenn (1985) Raffelt (2001)

Neutrino-matter interactions

Bruenn (1985) Raffelt (2001)

Neutrino-matter interactions

Bruenn (1985) Raffelt (2001)

Energy-dependent neutrino transport

U N I B A S E L

Relevant v-matter interactions

Relevant v-matter interactions

The conditions around the neutrino spheres are marked in

green ... collapse

Relevant v-matter interactions

The conditions around the neutrino spheres are marked in

green ... collapse

red ... postbounce

Bethe (1990) mean free path:

$$\lambda_{v} = 1.0 \times 10^{8} \rho_{12}^{-1} [(N^{2}/6A)X_{h} + X_{n}]^{-1} \varepsilon_{v}^{-2} \text{ cm}$$

Optical depth:

$$\tau = \int dr / \lambda$$

$$\mu_v \sim \mu_e - \mu_n + \mu_p$$

$$\frac{\Delta s}{\Delta t} = -\frac{\Delta Y_e}{\Delta t} \frac{\mu_e - \mu_n + \mu_p - E_\nu^{esc}}{T}$$

(Martinez-Pinedo, Liebendoerfer, Frekers, 2006)

$$\mu_v \sim \mu_e - \mu_n + \mu_p$$

$$\frac{\Delta s}{\Delta t} = -\frac{\Delta Y_e}{\Delta t} \frac{\mu_e - \mu_n + \mu_p - E_\nu^{esc}}{T}$$

v's escape directly: -> entropy decrease

v's thermalise: -> entropy increase

Histogram of electron neutrino emission

Physics for the collapse phase

Electron capture rates - ensemble of nuclei with individual rates

Thermalisation - neutrino-electron scattering, inelastic scattering with nuclei

Opacity

- coherent scattering
- ion-ion correlations
- clustering in phase
 transition
- unresolved: how to scatter on ensemble of nuclei?

Langake et al. 2003, Hix et al. 2003, Martinez-Pinedo, Liebendörfer, Frekers 2006

Myra & Bludman, Bruenn 1989, Langanke et al. 2008

Itoh 1975, Horowitz 1997, Bruenn & Mezzacappa 1997, Watanabe 2004, Horowitz et al. 2004, Botvian & Mishustin 2005, Marek et al. 2005

Structure and dynamics of nuclei are key!

Neutrinos from the postbounce phase

The neutrino luminosities reflect the accretion rate and the thermodynamic conditions at the neutrinospheres

Typical energy hierarchy of neutrino energies:

Histogram of electron neutrino emission

PNS evolution & $v(\mu/\tau)$ properties

Histogram of μ/τ neutrino emission

QCD phase transition induced explosions

U N I B A S E L

Second neutrino
peak in all flavours,
dominated by anti-v's
Step up in neutrino
rms energies

(Sagert, Fischer et al., PRL 2009)

SN as high-density physics laboratory

Neutrino signature from early QCD phase transition in proto-neutron star (EOS not compatible with 1.97 Ms neutron star! (Demorest et al. 2010))

(Dasgupta et al. 2010)

Physics for the postbounce phase

There are no heavy nuclei between the neutrinosphere and the shock!

Key input:

- high-density EOS
- fluid instabilities
- neutrino transport, (and oscillations?)

magnetic fields

Fluid overturn is essential for vheating efficiency

(Herant et al. 1994)

Physics for the postbounce phase

Radius

There are no heavy nuclei between the neutrinosphere and the shock!

Key input:

- high-density EOS
- fluid instabilities
- neutrino transport, (and oscillations?)
- magnetic fields

Fluid overturn is essential for vheating efficiency

(Herant et al. 1994)

Physics for the postbounce phase

There are no heavy nuclei between the neutrinosphere and the shock!

Key input:

- high-density EOS
- fluid instabilities
- neutrino transport, (and oscillations?)
- magnetic fields

Fluid overturn is essential for vheating efficiency

(Herant et al. 1994)

2D Models in axisymmetry

- Spectral neutrino transport
- Ray-by-ray approach couples transport in angular wedges to 2D hydrodynamics

Talks by

- Steve Bruenn
- Christian Ott
- Bernhard Müller
- Thomas Janka
- Neutrino heating
- Standing Accretion
 Shock Instability
- Input physics
- Asymmetries
- Grid/Coordinates
- Relativity / O(v/c)

- Convective turnover in 2D is restricted to toroidal shapes!
- Tube-shaped downstreams and broad upflows cannot be modelled in 2D.
- Fluid instabilities and coupling to magnetic are intrinsically 3D.

- Convective turnover in 2D is restricted to toroidal shapes!
- Tube-shaped downstreams and broad upflows cannot be modelled in 2D.
- Fluid instabilities and coupling to magnetic are intrinsically 3D.

Solving the Boltzmann equation

$$\begin{split} \frac{\partial F}{\alpha c \partial t} &+ \frac{\partial \left(4\pi r^2 \alpha \rho \mu F\right)}{\alpha \partial m} + \Gamma \left(\frac{1}{r} - \frac{\partial \alpha}{\alpha \partial r}\right) \frac{\partial \left[\left(1 - \mu^2\right) F\right]}{\partial \mu} \\ &+ \left(\frac{\partial \ln \rho}{\alpha c \partial t} + \frac{3 u}{r c}\right) \frac{\partial \left[\mu \left(1 - \mu^2\right) F\right]}{\partial \mu} \\ &+ \left[\mu^2 \left(\frac{\partial \ln \rho}{\alpha c \partial t} + \frac{3 u}{r c}\right) - \frac{1 u}{r c} - \mu \Gamma \frac{\partial \alpha}{\alpha \partial r}\right] \frac{1}{E^2} \frac{\partial \left(E^3 F\right)}{\partial E} \\ &= \frac{j}{\rho} - \tilde{\chi} F + \frac{1}{h^3 c^4} E^2 \int d\mu' R_{is} \left(\mu, \mu', E\right) F\left(\mu', E\right) \\ &- \frac{1}{h^3 c^4} E^2 F \int d\mu' R_{is} \left(\mu, \mu', E\right) \\ &+ \frac{1}{h^3 c^4} \left[\frac{1}{\rho} - F\left(\mu, E\right)\right] \int E'^2 dE' d\mu' \tilde{R}_{nes}^{in} \left(\mu, \mu', E, E'\right) F\left(\mu', E\right) \\ &- \frac{1}{h^3 c^4} F\left(\mu, E\right) \int E'^2 dE' d\mu' \tilde{R}_{nes}^{out} \left(\mu, \mu', E, E'\right) \left[\frac{1}{\rho} - F\left(\mu', E'\right)\right] \\ &\frac{\partial Y_e}{\partial t} = -\frac{2\pi m_B}{h^3 c^2} \int E^2 dE d\mu \left(\frac{j}{\rho} - \tilde{\chi} F\right) \quad \frac{\partial e}{\partial t} = \dots \frac{\partial u}{\partial t} = \end{split}$$

(Mezzacappa & Bruenn 1993, Liebendörfer 2000, Liebendörfer et al. 2004)

neutrino distr. function: $F(t,m,\mu,E) = f(t,r,\mu,E)/\rho$

Evolution of specific

=> 3D implicit problem

Comoving metric: $ds^{2} = -\alpha^{2}dt^{2} + \left(\frac{1}{\Gamma}\frac{\partial r}{\partial a}\right)^{2} + r^{2}\left(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}\right)$

Stress-energy tensor:

. .

$$\begin{array}{rcl} T^{tt} &=& \rho \left(1+e+J \right) \\ T^{ta} = T^{at} &=& \rho H \\ T^{aa} &=& p+\rho K \\ T^{\vartheta\vartheta} = T^{\varphi\varphi} &=& p+\frac{1}{2}\rho \left(J-K \right) \end{array}$$

Pitfalls of multi-D Boltzmann v-transport

Boltzmann transport:

- One fluid elemement contains
 4 v types x 20 energies x 100 angles = 8000 variables
 At a resolution of 1000^3 zones
- --> 64TB per time step

Hydrodynamics:

- One fluid element contains ~10 variables
- At a resolution of 1000^3 zones
 - --> 80GB per step

Pitfalls of multi-D Boltzmann v-transport

Boltzmann transport:

- One fluid elemement contains
 4 v types x 20 energies x 100 angles = 8000 variables
 At a resolution of 1000^3 zones
- --> 64TB per time step

Compression of Fermi-gas:

$$\frac{dF}{dt} - \frac{1}{3E^2} \frac{\partial}{\partial E} \left(E^3 \rho F \right) \frac{d}{dt} \left(\frac{1}{\rho} \right) - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{c\lambda}{3} \frac{\partial F}{\partial r} \right) = \left(\frac{dF}{dt} \right)_{collision}$$

$$de \qquad \text{pdV} \qquad \text{diffusion} = \text{interactions}$$

Hydrodynamics:

- One fluid element contains ~10 variables
- At a resolution of 1000^3 zones
 -> 80GB per step

difficult energy-terms must not be neglected!

Pitfalls of multi-D Boltzmann v-transport

Boltzmann transport:

- One fluid elemement contains
 4 v types x 20 energies x 100 angles = 8000 variables
 At a resolution of 1000^3 zones
- --> 64TB per time step

Compression of Fermi-gas:

$$\frac{dF}{dt} - \frac{1}{3E^2} \frac{\partial}{\partial E} \left(E^3 \rho F \right) \frac{d}{dt} \left(\frac{1}{\rho} \right) - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{c\lambda}{3} \frac{\partial F}{\partial r} \right) = \left(\frac{dF}{dt} \right)_{collision}$$

$$de \qquad pdV \qquad diffusion \qquad = interactions$$

Hydrodynamics:

- One fluid element contains ~10 variables
- At a resolution of 1000^3 zones
 --> 80GB per step

difficult energy-terms must not be neglected!

Diffusion limit:

$$\frac{\lambda}{3}\frac{\partial F}{\partial r} \ll F, \qquad \frac{H}{cJ} \sim 10^{-4}, \qquad H = \int_{-1}^{+1} F(\mu) \,\mu d\mu$$

Inaccurate fluxes in diffusion-regime due to large cancellations in angle integral!

There is no perfect transport algorithm...

The ideal algorithm combines the three green fields! However, it might be too complicated. Alternatives: Interpolate from diffusive regime to transparent regime:

Multi-Group flux-limited diffusion

Flux factor unknown in transparent regime!

• New: Isotropic diff. source approximation f = f(trapped) + f(streaming), separate evolution Eqs.

Isotropic Diffusion Source Approximation

 $D(f) = j - \chi^* f$ f = f(trapped) + f(streaming) = ft + fs

> Different approx. for trapped & streaming neutrino components!

Liebendörfer et al. 2009

Isotropic Diffusion Source Approximation

 $D(f) = j - \chi^* f$ f = f(trapped) + f(streaming) = ft + fs

 $D(ft) = j - \chi^* ft - \Sigma$ (1) $D(fs) = -\chi^* fs + \Sigma$ (2) Different approx. for trapped & streaming neutrino components!

 Σ determined by diffusion limit of (1)

advection-diffusion
 problem

Liebendörfer et al. 2009

Isotropic Diffusion Source Approximation

 $D(f) = j - \chi^* f$ f = f(trapped) + f(streaming) = ft + fs

 $D(ft) = j - \chi^* ft - \Sigma$ (1) $D(fs) = -\chi^* fs + \Sigma$ (2) Different approx. for trapped & streaming neutrino components!

 Σ determined by diffusion limit of (1) Stationary state approx. for (2) --> Poisson Eq.

- implicit local weak interaction solver
- advection-diffusion
 problem
- 20+1 Poisson solves per step
- Geometrical analysis of neutrinospheres

Comparison of IDSA Spectra

at 40 km radius (trapped regime) Trapped neutrinos dominate spectrum

at 80 km radius (semi-transparent) Trapped *and* streaming neutrinos form spectrum

at 160 km radius (free streaming) Streaming neutrinos dominate spectrum

Comparison of Hydrodynamical Evolution

From FISH to ELEPHANT...

Elegant parallel hydrodynamics with approximate neutrino transport

Lattimer-Swesty EoS

- Effective GR potential
- constrained div(B)
- 2nd order TVD
- \bullet IDSA for e-flavour ν 's
- Leakage for $\mu/\tau \nu$'s

3D supernova model with IDSA

Runs more optimistic than (Marek & Janka 2009) 2D models.

Runs more pessimistic than (Hix et al. 2010) 2D models.

• The 11 solar mass progenitor run shows positive velocities and produces an explosion

• The 15 solar mass progenitor has not (yet) developed positive velocities, even if the shock radius increases. Convergence test: blue run perhaps still too optimistic?

Radius [cm]

x 10⁷

5 × 10⁹