Supernova Bound on keV-mass Sterile Neutrinos

Shun Zhou

Max-Planck-Institut für Physik, München

Based on G.G. Raffelt & S.Z., Phys. Rev. D 83, 093014 (2011)

HAvSE 2011 Hamburg Neutrinos from Supernova Explosions

Outline

1. Motivation: WDM, Pulsar Kicks

2. Sterile Neutrinos in SN Cores

3. Energy losses and SN bounds

Robust evidence for Dark Matter

Abundance of Cosmic Substructure

WDM candidate: keV-mass sterile neutrinos

In the early Universe: production via neutrino oscillations

$$|\nu_{\alpha}\rangle = +\cos\vartheta|\nu_{1}\rangle + \sin\vartheta|\nu_{2}\rangle$$
$$|\nu_{s}\rangle = -\sin\vartheta|\nu_{1}\rangle + \cos\vartheta|\nu_{2}\rangle$$

Described by two parameters: $m_s \& \vartheta$

Boltzmann equation: distribution function of sterile neutrinos

$$\frac{\partial}{\partial t} f_s(p,t) - H p \frac{\partial}{\partial p} f_s(p,t) \approx \Gamma(\nu_\alpha \to \nu_s; p,t) \left[f_\alpha(p,t) - f_s(p,t) \right]$$

Matter effects: primordial lepton number asymmetry

$$\sin^2 2\theta_m \approx \frac{(\Delta m^2/2p)^2 \sin^2 2\theta}{(\Delta m^2/2p)^2 \sin^2 2\theta + (\Delta m^2/2p \cos 2\theta - V_m - V_T)^2}$$

Non-resonant case: Dodelson, Widrow, 94'

Resonant case: Shi, Fuller, 99'

$$\Omega_s h^2 \approx 0.1 \left(\frac{\sin^2 \vartheta}{3 \times 10^{-9}}\right) \left(\frac{m_s}{3 \text{keV}}\right)^{1.8}$$

$$\Omega_s h^2 \approx 0.1 \left(\frac{m_s}{1 \,\mathrm{keV}}\right) \left(\frac{L}{3 \times 10^{-3}}\right)$$

Pulsar velocities: asymmetric emission of sterile neutrinos

X-ray observations: to discover keV-mass sterile neutrinos

Various constraints on keV-mass sterile neutrinos

Standard energy-loss arguments

Production of sterile neutrinos:

Low matter density: neutrino flavor oscillations with matter effects

High matter density: production & absorption via scattering processes

Occupation-number formalism:

Sigl, Raffelt, 93'

 $\begin{array}{l} \rho_{ij} = \left\langle b_i^+ b_j \right\rangle \\ \hline \textbf{Diagonal terms: just the usual occupation numbers} \\ \hline \rho_{ij} = \left\langle d_j^+ d_i \right\rangle \end{array}$

Equations of motion:

$$\dot{\rho}_{\mathbf{p}} = i[\rho_{\mathbf{p}}, \Omega_{\mathbf{p}}] + \sum_{i=1}^{n} \left[\left(I_{i} - \frac{1}{2} \left\{ I_{i}, \rho_{\mathbf{p}} \right\} \right) \mathcal{P}_{\mathbf{p}}^{i} - \frac{1}{2} \left\{ I_{i}, \rho_{\mathbf{p}} \right\} \mathcal{A}_{\mathbf{p}}^{i} \right]$$

Neutral-current interaction

$$+\frac{1}{2}\sum_{a}\int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \Big[\mathcal{W}_{\mathbf{p}'\mathbf{p}}^{a} \Big(G^{a} \rho_{\mathbf{p}'} G^{a} (1-\rho_{\mathbf{p}}) + \text{h.c.} \Big) - \mathcal{W}_{\mathbf{p}\mathbf{p}'}^{a} \Big(\rho_{\mathbf{p}} G^{a} (1-\rho_{\mathbf{p}'}) G^{a} + \text{h.c.} \Big) \Big]$$

B_p

X

Two-flavor mixing case

$$\rho_{\mathbf{p}} = \frac{1}{2} \left(n_{\mathbf{p}} + \mathbf{P}_{\mathbf{p}} \cdot \boldsymbol{\tau} \right)$$
$$\Omega_{\mathbf{p}} = \frac{1}{2} \left(E_{\mathbf{p}} + \mathbf{B}_{\mathbf{p}} \cdot \boldsymbol{\tau} \right)$$

.....

Ζ4

Ρ

$$\dot{\rho}_{\mathbf{p}} = i[\rho_{\mathbf{p}}, \Omega_{\mathbf{p}}] \longrightarrow \dot{\mathbf{P}}_{\mathbf{p}} = \mathbf{B}_{\mathbf{p}} \times \mathbf{P}_{\mathbf{p}}$$

Flavor polarization vectors rotate around magnetic fields

$$\mathbf{B}_{\mathbf{p}} = \left(\frac{\Delta m^2}{2E}\sin 2\vartheta, \quad 0, \quad \frac{\Delta m^2}{2E}\cos 2\vartheta - V_{\text{eff}}\right)$$

Matter Effects

Wolfenstein, 78'; Mikheyev, Smirnov, 85

$$\sin^2 2\vartheta_{\nu,\overline{\nu}} = \frac{\sin^2 2\vartheta}{\sin^2 2\vartheta + (\cos 2\vartheta \mp (\pm)E/E_r)^2}$$

where the resonant energy is

$$E_r = \frac{\Delta m^2}{2|V_{\rm eff}|}$$

maximal mixing if $E \sim E_r \cos 2\vartheta$

Weak-damping limit

Oscillation length

$$\lambda_{\rm osc} = \frac{4\pi E}{\Delta \tilde{m}^2} < 0.7 \,\mathrm{cm} \left(\frac{E}{30 \,\mathrm{MeV}}\right) \left(\frac{10^{-4}}{\sin 2\vartheta}\right) \left(\frac{10 \,\mathrm{keV}}{m_s}\right)^2$$

Mean free path

$$\lambda_{\rm mfp} = \frac{1}{N_{\rm B}\sigma_{\nu N}} \approx 10^3 \,\mathrm{cm} \left(\frac{30 \,\mathrm{MeV}}{E}\right)^2 \left(\frac{10^{14} \,\mathrm{g} \,\mathrm{cm}^{-3}}{\rho}\right)$$

Neutrinos oscillate many times before a subsequent collision with nucleons

In the weak-damping limit

$$\widetilde{\rho}_{\mathbf{p}} = \frac{1}{2} \Big[n_{\mathbf{p}} + \left(\mathbf{P}_{\mathbf{p}} \cdot \widehat{\mathbf{B}}_{\mathbf{p}} \right) \left(\widehat{\mathbf{B}}_{\mathbf{p}} \cdot \boldsymbol{\tau} \right) \Big]$$

averaged over a period of oscillation

$$\widetilde{\rho}_{\mathbf{p}} = \begin{pmatrix} f_{\mathbf{p}}^{\alpha} & 0\\ 0 & f_{\mathbf{p}}^{s} \end{pmatrix} + \frac{1}{2} \left(f_{\mathbf{p}}^{\alpha} - f_{\mathbf{p}}^{s} \right) t_{\mathbf{p}} \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Two independent parameters: occupation numbers $f^{\alpha}_{p} \& f^{s}_{p}$

Simplified equations of motion:

$$\dot{f}_{\mathbf{p}}^{s} = \frac{1}{4} s_{\mathbf{p}}^{2} \left\{ \left[(1 - f_{\mathbf{p}}^{s}) \mathcal{P}_{\mathbf{p}}^{\alpha} - f_{\mathbf{p}}^{s} \mathcal{A}_{\mathbf{p}}^{\alpha} \right] + \sum_{a} \left(g_{\alpha}^{a} \right)^{2} \int \frac{d^{3} \mathbf{p}}{(2\pi)^{3}} \left[\mathcal{W}_{\mathbf{p}'\mathbf{p}}^{a} f_{\mathbf{p}'}^{\alpha} (1 - f_{\mathbf{p}}^{s}) - \mathcal{W}_{\mathbf{p}\mathbf{p}'}^{a} f_{\mathbf{p}}^{s} (1 - f_{\mathbf{p}'}^{\alpha}) \right] \right\}$$

further simplification if sterile neutrinos escape from the SN core

$$\dot{f}_{\mathbf{p}}^{s} = \frac{1}{4} s_{\mathbf{p}}^{2} \left[\mathscr{P}_{\mathbf{p}}^{\alpha} + \sum_{a} \left(g_{\alpha}^{a} \right)^{2} \int \frac{d^{3} \mathbf{p}}{\left(2\pi \right)^{3}} \mathscr{W}_{\mathbf{p}'\mathbf{p}}^{a} f_{\mathbf{p}'}^{\alpha} \right]$$

Lepton-number-loss rate $\dot{N}_{\rm L} = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \dot{f}_{\mathbf{p}}^s$

 $\operatorname{set} f_{p}^{s} = 0$

Energy-loss rate

$$\boldsymbol{\mathcal{E}}_{s} = \int \frac{d^{3} \mathbf{p}}{(2\pi)^{3}} E \dot{f}_{\mathbf{p}}^{s} \qquad \mathbf{12}$$

Neutrino matter potentials

$$\begin{split} V_{\nu_{e}} &= \sqrt{2}G_{\rm F}N_{\rm B} \Bigg[Y_{e} - \frac{1}{2}Y_{n} + 2Y_{\nu_{e}} + Y_{\nu_{\mu}} + Y_{\nu_{\tau}} \Bigg] \\ V_{\nu_{\mu}} &= \sqrt{2}G_{\rm F}N_{\rm B} \Bigg[-\frac{1}{2}Y_{n} + Y_{\nu_{e}} + 2Y_{\nu_{\mu}} + Y_{\nu_{\tau}} \Bigg] \\ V_{\nu_{\tau}} &= \sqrt{2}G_{\rm F}N_{\rm B} \Bigg[-\frac{1}{2}Y_{n} + Y_{\nu_{e}} + Y_{\nu_{\mu}} + 2Y_{\nu_{\tau}} \Bigg] \end{split}$$

Remarks:

- 1. degenerate electron neutrinos; the equation of state involved; charged current interactions; so we consider tau neutrinos for simplicity;
- 2. we assume the SN core to be homogeneous and isotropic.

Tau-sterile neutrino mixing

$$V_{v_{\tau}} = -\frac{G_{\rm F}}{\sqrt{2}} N_{\rm B} \left(1 - Y_e - 2Y_{v_e} - 4Y_{v_{\tau}} \right) < 0$$

$$\sin^2 2\vartheta_{\nu,\overline{\nu}} = \frac{\sin^2 2\vartheta}{\sin^2 2\vartheta + (\cos 2\vartheta \pm E/E_r)^2}$$

Initial conditions:

 $Y_e = 0.3, Y_{v_e} = 0.07, Y_{v_{\mu}} = Y_{v_{\tau}} = 0$

- . the MSW resonance occurs in the antineutrino channel;
 - asymmetry between tau neutrinos and antineutrinos.

Simple bounds in the 'vacuum limit': E_r >> E

$$\sin^2 2\vartheta_{\nu,\overline{\nu}} = \frac{\sin^2 2\vartheta}{\sin^2 2\vartheta + (\cos 2\vartheta \pm E / E_r)^2}$$

$$\mathcal{G}_{_{\!\!\mathcal{V}}} \approx \mathcal{G}_{_{\!\!\overline{\mathcal{V}}}} \approx \mathcal{G}$$

Energy-loss rates

$$\mathcal{E}_{s} = 2 \int_{0}^{\infty} \frac{E^{2}}{2\pi^{2}} \frac{E}{\exp(E/T) + 1} \left(\frac{1}{4}\sin^{2}2\vartheta\right) \frac{N_{B}G_{F}^{2}E^{2}}{\pi} dE = 4N_{B}G_{F}^{2}T^{6}\vartheta^{2}$$

$$\frac{\nu + \overline{\nu}}{\nu - N}$$

Supernova Bound

$$\mathcal{E}_{s} = 4N_{\rm B}G_{\rm F}^{2}T^{6}\vartheta^{2} < \mathcal{E}_{\nu} = 3.0 \times 10^{33}\,{\rm erg\,cm^{-3}s^{-1}}$$

$$\mathcal{9}^2 \leq 10^{-8}$$

$$\label{eq:rho} \begin{split} \rho \approx \rho_{nuc} = 3 \times 10^{14} \mbox{ g cm}^{-3} \\ T \approx 30 \mbox{ MeV} \end{split}$$

Such a simple bound is valid and massindependent only in the 'vacuum limit'.

100

10

1

0.1

0.01

WDM

HDM

 $L \approx 10^{-10}$

 10^{-20} 10^{-18} 10^{-16} 10^{-14} 10^{-12} 10^{-10} 10^{-8}

 $\sin^2 2\theta$

 $\nu_{\tau} \rightarrow \nu_{s}$

Qu 42 0.5

 10^{-6}

Including the degen. param.

$$f_E^{\nu_\tau} = \frac{1}{\exp[E/T - \eta] + 1}$$
$$f_E^{\overline{\nu}_\tau} = \frac{1}{\exp[E/T + \eta] + 1}$$

15

Criterion for a stationary state

Neutrino Emission Rate

Antineutrino Emission Rate

Evolution of the degeneracy parameter

$$\begin{split} \dot{N}_{\nu_{\tau}} &= -\frac{1}{4} \sum_{a} \int \frac{E^2 dE}{2\pi^2} \sin^2 2\vartheta_{\nu} \int \frac{E'^2 dE'}{2\pi^2} \mathcal{W}_{E'E}^a f_{E'}^{\nu_{\tau}} \\ \dot{N}_{\overline{\nu_{\tau}}} &= -\frac{1}{4} \sum_{a} \int \frac{E^2 dE}{2\pi^2} \sin^2 2\vartheta_{\overline{\nu}} \int \frac{E'^2 dE'}{2\pi^2} \overline{\mathcal{W}}_{E'E}^a f_{E'}^{\overline{\nu_{\tau}}} \\ \end{split}$$

Sterile neutrinos with mixing angles $\vartheta_{\nu} < \vartheta_{c} \approx 10^{-2}$ can escape from the core.

Evolution of the degeneracy parameter

$$\frac{d}{dt}\eta(t) = \frac{N_{\rm B}G_{\rm F}^2 s_{2\vartheta}^2 T^2}{4\pi} \left[\mathcal{F}_{\nu}(\eta) - \mathcal{F}_{\nu}(\eta) \right] \mathcal{G}^{-1}(\eta)$$

Feedback effects Initial condition: t = 0, $\eta = 0$

- 1. The stable point η^* can be either negative or positive, depending on the sterile neutrino mass and vacuum mixing angle;
- 2. The values of η^* are negative for large vacuum mixing angles, because more antineutrinos than neutrinos are trapped in the SN core;
- We temporarily ignore the trapped sterile neutrinos, which may actually transfer energies rapidly due to their larger mean free paths.

Thank you for your attention!

Sterile Neutrinos and SN Explosions

How to constrain sterile neutrinos?

Remarks:

- If the lepton-number loss is not significant, one can simply apply the standard energy-loss argument to the v_e-v_s mixing case;
- For the warm-dark-matter mass range (1 keV to 10 keV), the MSW resonance may be present and amplify the lepton-number-loss rate;
- Sterile neutrinos have already done something important during the collapsing phase, such as reducing the electron number fraction Y_e and thus the size of the homologous core, and the energy of the shock wave.

Sterile Neutrinos and SN Explosions

Sterile neutrino assisted SN explosions?

Hidaka, Fuller, 06'

One-zone model of the collapsing core: the EoS & resonant v_e-v_s conversion,...

To include the neutrino trapping and diffusion, shock-wave propagation, ...

