Signatures of supernova neutrino oscillations

Amol Dighe

Tata Institute of Fundamental Research Mumbai, India

 $\label{eq:Ha} \begin{array}{l} \text{Ha}\nu \text{se 2011} \\ \text{DESY, Hamburg, July 22, 2011} \end{array}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

• Spectral split and Earth matter effects

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

Outline

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

- Spectral split and Earth matter effects
- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

Oscillations of SN neutrinos

Inside the SN: flavor conversion

Collective effects and MSW matter effects

Between the SN and Earth: no flavor conversion

Mass eigenstates travel independently

Inside the Earth: flavor oscillations

MSW matter effects (if detector is shadowed by the Earth)

Changing paradigm of supernova neutrino oscillations

Neutrino-electron forward scattering: MSW effects (1999 -)

- Flavor conversions mainly in MSW resonance regions : $(\rho \sim 10^{3-4} \text{ g/cc}, 1-10 \text{ g/cc})$
- Sensitivity to $\sin^2 \theta_{13} \gtrsim 10^{-5}$ and mass hierarchy

Neutrino-neutrino forward scattering: Collective effects (2006 –

- Significant flavor conversions near the neutrinosphere : $(
 ho \sim 10^{6-10} \text{ g/cc})$
- Synchronized osc \rightarrow bipolar osc \rightarrow spectral split
- Single spectral split: In IH, $\bar{\nu}_e$ and $\bar{\nu}_\mu$ spectra swap completely ν_e and ν_μ spectra swap for $E > E_c$
- Sensitivity even to $\sin^2 \theta_{13} \sim 10^{-10}$

Changing paradigm of supernova neutrino oscillations

Neutrino-electron forward scattering: MSW effects (1999 -)

- Flavor conversions mainly in MSW resonance regions : $(\rho \sim 10^{3-4} \text{ g/cc}, 1-10 \text{ g/cc})$
- Sensitivity to $\sin^2 \theta_{13} \gtrsim 10^{-5}$ and mass hierarchy

Neutrino-neutrino forward scattering: Collective effects (2006 -)

- Significant flavor conversions near the neutrinosphere : $(\rho \sim 10^{6-10} \text{ g/cc})$
- Synchronized osc \rightarrow bipolar osc \rightarrow spectral split
- Single spectral split: In IH, $\bar{\nu}_e$ and $\bar{\nu}_\mu$ spectra swap completely ν_e and ν_μ spectra swap for $E > E_c$
- Sensitivity even to $\sin^2 \theta_{13} \sim 10^{-10}$

Changing paradigm of SN neutrino oscillations

Multiple spectral splits (2008 -)

- "Single spectral split" valid only when $L_{
 u_e} pprox L_{ar
 u_e} \gtrsim L_{
 u_\mu}$
- In general, both ν_e ↔ ν_y and ν
 _e ↔ ν
 _y swaps take place, in sharply separated energy regions

 $\begin{pmatrix} \nu_{\chi} \\ \nu_{\nu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{23} & \sin\theta_{23} \\ -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$

- Three flavour effects: even ν_e ↔ ν_x and ν
 _e ↔ ν
 _x swaps take place, in sharply separated energy regions
- The swapped / unswapped energy regions depend on primary fluxes and mass hierarchy

Multi-angle effects (2008 –

- Smoothening of flavor conversion features
- Suppression of flavor conversions
- Effect of neutrino background vis a vis normal matter

Changing paradigm of SN neutrino oscillations

Multiple spectral splits (2008 -)

- "Single spectral split" valid only when $L_{
 u_e} pprox L_{ar
 u_e} \gtrsim L_{
 u_\mu}$
- In general, both ν_e ↔ ν_y and ν
 _e ↔ ν
 _y swaps take place, in sharply separated energy regions

 $\begin{pmatrix} \nu_{\chi} \\ \nu_{\nu} \end{pmatrix} = \begin{pmatrix} \cos\theta_{23} & \sin\theta_{23} \\ -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$

- Three flavour effects: even ν_e ↔ ν_x and ν
 _e ↔ ν
 _x swaps take place, in sharply separated energy regions
- The swapped / unswapped energy regions depend on primary fluxes and mass hierarchy

Multi-angle effects (2008 -)

- Smoothening of flavor conversion features
- Suppression of flavor conversions
- Effect of neutrino background vis a vis normal matter

Outline

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

- Spectral split and Earth matter effects
- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

Single-angle approximation

• Effective Hamiltonian: $H = H_{vac} + H_{MSW} + H_{\nu\nu}$

$$\begin{array}{lll} H_{vac}(\vec{p}) &=& M^2/(2p) \\ H_{MSW} &=& \sqrt{2}G_F n_{e^-} diag(1,0,0) \\ H_{\nu\nu}(\vec{p}) &=& \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1 - \cos\theta_{pq}) \big(\rho(\vec{q}) - \bar{\rho}(\vec{q})\big) \end{array}$$

Duan, Fuller, Carlson, Qian, PRD 2006 Single-angle: All neutrinos face the same average $\nu\nu$ potential [effective averaging of $(1 - \cos \theta_{pq})$]

Sequential dominance of collective effects (Fe core)

• Regions of synchronized oscillations, bipolar oscillations and spectral split are reasonably well-separated.

Fogli, Lisi, Marrone, Mirizzi, JCAP 0712, 010 (2007)

 With three flavors, factorization into two-flavor effects possible

B.Dasgupta and AD, PRD77, 113002 (2008)

・ コット (雪) (小田) (コット 日)

Three-flavor effects on neutrino spectra

- $\nu_e \leftrightarrow \nu_y$ swap first
- Additional $\nu_e \leftrightarrow \nu_x$ swap
- Can sometimes effectively reverse earlier ν_e ↔ ν_y split
- $\nu_e \leftrightarrow \nu_x$ swap more likely to be incomplete / non-adiabatic

A. Friedland, PRL 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Dasgupta, Mirizzi, Tamborra, Tomas, PRD 2010

How do primary spectra determine swapped regions ?

Three-flavor effects on neutrino spectra

- $\nu_e \leftrightarrow \nu_y$ swap first
- Additional $\nu_e \leftrightarrow \nu_x$ swap
- Can sometimes effectively reverse earlier ν_e ↔ ν_y split
- $\nu_e \leftrightarrow \nu_x$ swap more likely to be incomplete / non-adiabatic

A. Friedland, PRL 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Dasgupta, Mirizzi, Tamborra, Tomas, PRD 2010

How do primary spectra determine swapped regions ?

Swap patterns with $\langle E_{ u_{\mu}} \rangle$ and $L_{ u_{\mu}}$

No swap, $e \leftrightarrow y$ swap, $e \leftrightarrow x$ swap

- $\langle E_{
 u_e}
 angle =$ 12 MeV, $\langle E_{ar{
 u}_e}
 angle =$ 15 MeV
- $L_{\nu_e} = L_{\bar{\nu}_e}$
- For lower $\langle E_{\nu_e} \rangle$, scale $\langle E_{\nu_{\mu}} \rangle$ appropriately
- A: $L_{\nu_e} \gtrsim L_{\nu_{\mu}}$, typical of accretion phase
- C: $L_{\nu_e} \lesssim L_{\nu_{\mu}}$, typical of cooling phase

Single-angle results

S. Choubey, B. Dasgupta, AD, A. Mirizzi, arXiv:1008.0308 [hep-ph]

Different phases: different patterns of multiple splits

Phase A

Phase C

Multi-angle effects smear the sharp features in the spectra

Fogli, Lisi, Marrone, Mirizzi, JCAP 0712, 010 (2007)

(日) (日) (日) (日) (日) (日) (日)

- "Multi-angle decoherence" during collective oscillations suppressed by ν-ν̄ asymmetry
- Single-crossed spectra with low lepton asymmetry show instability in both hierarchies

Esteban-Pretel, Pastor, Tomas, Raffelt, Sigl, PRD76, 125018 (2007)

• If matter density is sufficiently high (may be possible during the accretion phase), multi-angle decoherence possible.

Esteban-Pretel, Mirizzi, Pastor, Tomas, Raffelt, Serpico, G. Sigl, PRD78, 085012 (2008)

 In accretion phase, collective oscillations are highly suppressed

Chakraborty, Fisher, Mirizzi, Saviano, Tomas, arXiv: 1104.4031, arXiv:1105.1130

Final spectra with single- vs. multi-angle

- Collective oscillations are suppressed by the multi-angle effects of neutrinos themselves
- Additional effects of normal matter seem to be negligible
- Multi-angle effects smear the sharp features in the spectra

Duan and Friedland, PRL 2011

Linearized analysis for azimuthally symmetric emission:

- When $\mu \gg \overline{\lambda}$ or $\overline{\lambda} \gg \mu$, consistency conditions not satisfied, so no instability can form.
- Collective oscillations start only when $\bar{\lambda} \sim \mu$

Banerjee, AD, Raffelt, arXiv:1107.2308 [hep-ph] The jury is still out on the multi-angle effects

Linearized analysis for azimuthally symmetric emission:

- When $\mu \gg \overline{\lambda}$ or $\overline{\lambda} \gg \mu$, consistency conditions not satisfied, so no instability can form.
- Collective oscillations start only when $\bar{\lambda} \sim \mu$

Banerjee, AD, Raffelt, arXiv:1107.2308 [hep-ph]

The jury is still out on the multi-angle effects

Outline

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

- Spectral split and Earth matter effects
- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

MSW Resonances inside a SN

AD, A.Smirnov, PRD62, 033007 (2000)

H resonance: ($\Delta m_{\rm atm}^2$, θ_{13}), $\rho \sim 10^3$ –10⁴ g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Adiabatic (non-adiabatic) for $\sin^2 \theta_{13} \gtrsim 10^{-3} (\lesssim 10^{-5})$

L resonance: (Δm_{\odot}^2 , θ_{\odot}), $\rho \sim 10-100$ g/cc

Always adiabatic, always in v

$$F_{\nu_e} = \rho \; F^0_{\nu_e} + (1-\rho) \; F^0_{\nu_x} \;, \qquad F_{\bar{\nu}_e} = \bar{\rho} \; F^0_{\bar{\nu}_e} + (1-\bar{\rho}) \; F^0_{\nu_x}$$

- Approx constant with energy for "small" θ_{13} (sin² $\theta_{13} \lesssim 10^{-5}$) and "large" θ_{13} (sin² $\theta_{13} \gtrsim 10^{-3}$)
- Zero / nonzero values of p or p
 can be determined through indirect means (earth matter effects)

(日) (日) (日) (日) (日) (日) (日)

Earth matter effects

• If F_{ν_1} and F_{ν_2} reach the earth,

 $F_{\nu_{\theta}}^{D}(L) - F_{\nu_{\theta}}^{D}(0) = (F_{\nu_{2}} - F_{\nu_{1}}) \times \sin 2\theta_{12}^{\oplus} \sin(2\theta_{12}^{\oplus} - 2\theta_{12}) \sin^{2}\left(\frac{\Delta m_{\oplus}^{2}L}{4E}\right)$

(Sign changes for antineutrinos)

- $\rho = 0 \Rightarrow F_{\nu_1} = F_{\nu_2}$, $\bar{\rho} = 0 \Rightarrow F_{\bar{\nu}_1} = F_{\bar{\nu}_2}$
- Nonzero Earth matter effects require
 - Neutrinos: $p \neq 0$
 - Antineutrinos: $\bar{p} \neq 0$
- Possible to detect Earth effects since they involve oscillatory modulation of the spectra
- An indirect way of determining nonzero p or \bar{p} value
- Spectral splits ⇒ the value of p/p̄ may vanish in a part of the spectrum.

When shock wave passes through a resonance region (density ρ_H or ρ_L):

- adiabatic resonances may become momentarily non-adiabatic
- Sharp changes in the final spectra even if the primary spectra change smoothly

R. C. Schirato, G. M. Fuller, astro-ph/0205390

・ ロ ト ・ 雪 ト ・ 目 ト ・

G. L. Fogli, E. Lisi, D. Montanino and A. Mirizzi, PRD 68, 033005 (2003)

Change in probability during the shock wave

- With time, resonant energies increase
- p or p
 is energy-dependent and time-dependent

Tomas, Kajhelriess, Raffelt, AD, Janka, Scheck, JCAP 0409, 015 (2004)

Kneller, McLaughlin, Brockman, PRD 77, 045023 (2008)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Turbulent convections behind the shock wave ⇒ gradual depolarization effects
- 3-flavor depolarization would imply equal fluxes for all flavors ⇒ No oscillations observable

Friedland, Gruzinov, astro-ph/0607244; Choubey, Harries, Ross, PRD76, 073013 (2007)

- For amplitude \lesssim 1%, turbulence effectively two-flavor
- For large θ_{13} , shock effects likely to survive
- Jury still out

Kneller and Volpe, PRD 82, 123004 (2010)

(日) (日) (日) (日) (日) (日) (日)

For details, see talk by Kneller

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

Spectral split and Earth matter effects

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

Water Cherenkov detector: (events at SK)

•
$$ar{
u}_e p
ightarrow ne^+$$
: (~ 7000 - 12000)
 $\Delta_{
m WC}/
m MeV = 0.47 \sqrt{E_e/
m MeV}$

•
$$\nu e^- \rightarrow \nu e^-$$
: $\approx 200 - 300$

•
$$u_e$$
 +¹⁶ O $ightarrow$ X + e^- : $pprox$ 150–800

Carbon-based scintillation detector:

•
$$\bar{\nu}_e p \rightarrow ne^+$$
 (~ 300 per kt)
 $\Delta_{\rm SC}/{\rm MeV} = 0.075 \sqrt{E_e/{\rm MeV}}$
• $\nu + {}^{12}C \rightarrow \nu + X + \gamma$ (15.11 MeV)
• $\nu p \rightarrow \nu p$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Liquid Argon detector:

•
$$\nu_e$$
 + ⁴⁰ Ar \rightarrow ⁴⁰ K^* + e^- (\sim 300 per kt)
 $\Delta_{\text{LAr}}/\text{MeV} = 0.11 \sqrt{E_e/\text{MeV}} + 0.02 E_e/\text{MeV}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lead detector:

•
$$\nu_e + {}^{208}Pb \rightarrow {}^{207}Bi + n + e^-$$

•
$$\nu_{e}$$
 +²⁰⁸ Pb $ightarrow$ ²⁰⁶ Bi + 2n + e^{-}

•
$$\nu_{\chi}$$
 +²⁰⁸ Pb \rightarrow ²⁰⁷ Pb + n

•
$$u_{x} + {}^{208}$$
 Pb $ightarrow {}^{206}$ Pb $+$ 2n

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

- Spectral split and Earth matter effects
- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

Spectra at detectors with Earth effects: phase A

- Spectral splits not visible
- Earth effects possibly visible in neutrinos

Spectra at detectors with Earth effects: phase C

- Spectral split may be visible as "shoulders"
- Earth effects possibly visible, more prominent in ve

Single-angle

Earth effects: oscillations at a single detector

Fourier power spectrum: $G_N(k) = \frac{1}{N} \left| \sum_{events} e^{iky} \right|^2$ ($y \equiv 25 \ MeV/E$)

• Peak positions model independent, at known frequencies

AD, M. Kachelrieß, G. Raffelt,

R. Tomàs, JCAP 0401:004 (2004)

- Detection of Earth effects is practical, especially at a scintillation / liquid Argon detector.
- If Earth effect oscillations are in only a part of the spectrum, that region may be difficult to identify

Comparison between two detectors

 Ratio of luminosities at IceCube and a megaton water Cherenkov, as a function of time

Comparing spectra at two 400 kt water Cherenkovs

Robust experimental signature

• Earth effects can identify nonzero p/\bar{p}

AD, M. Keil, G. Raffelt, JCAP 0306:005 (2003)

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

- Spectral split and Earth matter effects
- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

Time dependent spectral evolution during shock wave

J.P.Kneller, G.C.Mclaughlin, J.Brockman, PRD77, 045023 (2008)

Three-flavor calculation:

Dip in positron spectrum with IH and large θ_{13}

Gava, Kneller, Volpe and McLaughlin, PRL 103, 071101 (2009)

イロト 不良 とくほ とくほう 二日

Shock signals at a megaton water Cherenkov

- Time-dependent dip/peak features in $N_{\nu_e,\bar{\nu}_e}(E)$, $\langle E_{\nu_e,\bar{\nu}_e} \rangle$, $\langle E_{\nu_e,\bar{\nu}_e}^2 \rangle$, etc.
- When shock front is at density ρ , it gives dip/peak in the above quantities at $\frac{E_{res}}{25MeV} \approx \frac{600}{Y_e \rho(g/cc)}$
- $\bullet \Rightarrow$ Tracking of shock wave while it is still inside the mantle

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck, JCAP 0409, 015 (2004)

Identifying mixing scenario

- Shock effects present in ν_e only for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$
- Shock effects present in $\bar{
 u}_e$ only for IH $\oplus \sin^2 heta_{13} \gtrsim 10^{-5}$
- Absence of shock effects gives no concrete signal. primary spectra too close ? turbulence ?

Shock signals at a megaton water Cherenkov

- Time-dependent dip/peak features in $N_{\nu_e,\bar{\nu}_e}(E)$, $\langle E_{\nu_e,\bar{\nu}_e} \rangle$, $\langle E_{\nu_e,\bar{\nu}_e}^2 \rangle$, etc.
- When shock front is at density ρ , it gives dip/peak in the above quantities at $\frac{E_{res}}{25MeV} \approx \frac{600}{Y_e \rho(g/cc)}$
- $\bullet \Rightarrow$ Tracking of shock wave while it is still inside the mantle

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck, JCAP 0409, 015 (2004)

Identifying mixing scenario

- Shock effects present in ν_e only for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$
- Shock effects present in $\bar{\nu}_e$ only for IH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-5}$
- Absence of shock effects gives no concrete signal. primary spectra too close ? turbulence ?

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

- Spectral split and Earth matter effects
- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

Vanishing neutronization (ν_e) burst

 Time resolution of the detector crucial for separating ν_e burst from the accretion phase signal

Burst signal vanishes for NH $\oplus \sin^2 \theta_{13} \gtrsim 10^{-3}$

Stepwise spectral split in O-Ne-Mg supernovae

MSW resonances deep inside collective regions

H. Duan, G. M. Fuller, J. Carlson, Y.Z.Qian, PRL100, 021101 (2008)

C. Lunardini, B. Mueller, H. T. Janka, arXiv:0712.3000

"MSW-prepared" spectral splits: two for IH, one for NH

H.Duan, G.Fuller, Y.Z.Qian, PRD77, 085016 (2008)

Positions of splits fixed by initial spectra

B.Dasgupta, AD, A. Mirizzi, G.G.Raffelt, PRD77, 1130007 (2008)

- v_e suppression more at low energy: Ar detector crucial
- Identification of O-Ne-Mg supernova ??

Multi-angle effects in O-Ne-Mg spectral splits

Cherry, Fuller, Carlson, Duan, Qian, PRD 82, 085025 (2010)

・ロット (雪) (日) (日)

ъ

Results qualitatively the same even with multi-angle effects

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

- Spectral split and Earth matter effects
- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

NC events at a scintillator

R-process nucleosynthesis

- Significant suppression effect in IH
- NH effects highly dependent on flux ratios
- Magnitude of effect dependent on astrophysical conditions

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Duan, Friedland, McLaughlin, Surman, J. Phys. G: Nucl Part Phys, 38, 035201 (2011)

QCD phase transition

- Sudden compactification of the progenitor core during the QCD phase transition
- Prominent burst of v
 _e, visible at IceCube and SK

Dasgupta et al, PRD 81, 103005 (2010)

ヘロマ ヘ動 マイロマー

ъ

Diffused SN neutrino background

 $\bullet\,$ Collective effects affect predictions of the predicted fluxes by up to $\sim 50\%$

Chakraborty, Choubey, Dasgupta, Kar, JCAP 0809, 013 (2009)

• Shock wave effects can further change predictions by 10-20%

Galais, Kneller, Volpe, Gava, PRD 81, 053002 (2010)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Neutrino flavor conversions

- Collective flavor conversions
- Oscillations due to the MSW effect

2 Neutrino signals at detectors

- Spectral split and Earth matter effects
- Shock wave effects
- Neutronization burst
- Indirect oscillation signals

Smoking gun signals and caveats

Earth matter effects

- Identification of nonzero p/\bar{p}
- If primary fluxes are similar, identifying Earth effects is hard
- Multi-angle effects still to be understood
- Better results with ν_e spectrum \Rightarrow Ar detector crucial

Shock wave effects

- Presence / absence independent of collective effects
- Stochastic density fluctuations: may partly erase the shock wave imprint
- Turbulent convections behind the shock wave: gradual depolarization effects

Neutronization burst signal

Robust, but needs Ar detector with good time resolution

Observe

- $\nu_e/\bar{\nu}_e$ spectra
- NC events
- time variation of the signal
- Earth matter effects

Determine

- Primary fluxes
- Shock propagation

Not impossible, but many gaps still to be filled

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Shock wave effects likely to be prominent Hierarchy determination may be easier Shock tracking may be possible
- $P_H = 0 \Rightarrow$ can reconstruct spectra just after collective effects
- Earth effects may tell if p or \bar{p} is nonzero. This can help reconstruct spectra before collective effects

(日) (日) (日) (日) (日) (日) (日)

• Experimental measurement of collective effects ??

Still too many uncertainties in fluxes, p and \bar{p} ?

One can nevertheless make the following measurements / analyses:

- ν_e and $\bar{\nu}_e$ spectra
- NC spectra through scintillation detectors
- single- and double-neutron events at Pb detectors
- Time modulation of flux, average energy, higher moments
- Time dependent, relative luminosities at two detectors
- Oscillatory spectral modulations for Earth effects
- Other non-thermal features in the spectrum