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July 19-23, 2011 Haνse 2011      DESY, Hamburg 2



Introduction - Generalities
 It is a pleasure to set the stage for this 

afternoon’s series of detector-specific talks
 Super-K + Gd for SN detection – Makodo Sakuda
 SN neutrino signal in Icecube – Goesta Kroll
 SN neutrino detection in Antares – Vladimir 

Kulikovskiy
 SN neutrinos in liquid scintillator detectors – Aldo 

Ianni
 SN neutrinos in LVD – Walter Fulgione
 Coherent scattering for SN neutrinos – Georgios

Tsiledakis
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Introduction - Generalities

 My objectives are to:
 examine the SN neutrino signal and comment on 

the desired sensitivities and capabilities of an 
ideal SN detector

 review the coupled aspects of target choice and 
detection technology

 Contrast and compare the sensitivities and 
capabilities of different choices
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Supernova neutrinos –
First order expectations
 Approximate equipartition of neutrino fluxes
 Several characteristic timescales for the phases of the explosion 

(collapse, burst, accretion, cooling)
 Time-evolving νe, νe, ν”μ” luminosities reflecting aspects of SN dynamics

 Presence of neutronization pulse
 Hardening of spectra through accretion phase then cooling

 Fermi-Dirac thermal energy distributions characterized by a 
temperature, Tν, and pinching parameter, ην

 Hierarchy and time-evolving of average energies at the neutrinosphere
T(ν”μ” ) > T(νe) > T(νe )

 ν-ν scattering collective effects and MSW oscillations
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Put another way...

An observed SN signal potentially has 
information in its:

 The time evolution of the luminosities
 The time evolution of the average energies
 The values of the pinching parameters
 Deviation from the equiparition of fluxes
 Modifications of the above due to ν-ν

scattering collective effects and MSW oscillations
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And so....

An ideal detector would do a good job of 
measuring all of these properties....

Nature has not provided us with such tools!

Let’s examine the motivation for making such 
measurements before discussing what is 
possible
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What is to be learned?
 Astrophysics

 Explosion mechanism
 Accretion process
 Black hole formation (cutoff)
 Presence of Spherical accretion shock instabilities (3D effect)
 Proto-neutron star EOS
 Microphysics and neutrino transport (neutrino temperatures and 

pinch parameters)
 Nucleosynthesis of heavy elements

 Particle Physics
 Normal or Inverted neutrino mass hierarchy, θ13
 Presence of axions, exotic physics, or extra large dimensions 

(cooling rate)
 Etc.
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What distinguishes SN 
neutrinos from others?
 Unlike solar, atmospheric, reactor or geo-neutrinos... SN neutrinos are 

not always there
 Unlike accelerator neutrinos we don’t know when they are coming
 Unlike appearance or disappearance experiments the “beam” contains 

all flavours ~ equally
 The beam is a primary beam (not tertiary as for atmospheric or 

accelerator neutrinos) and the energy spectrum has direct physics 
content

 The intensity of the beam has a probable value but could differ by more 
than 2 orders of magnitude

 They have their own characteristic range of energies determined by 
core collapse physics and SN1987A confirms that we have some 
understanding of that

 Energies are “thermal” described by Fermi-Dirac function modified by a 
pinching parameter or chemical potential, at least initially, and are 
imprinted with further physics processes of great interest
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So...

These considerable differences drive the 
design of a SN detector... Right?

Well... Not really, or not often, most SN 
detectors were designed for other primary 
physics objectives.

And some have a lifetime < 1/fGSN
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How do we detect a SN?
 We can instrument as large a mass as possible, 

for as long as possible, and watch for a burst of 
the subtle effects of the neutrino’s weak 
interactions

 We get to chose the target and the technology
 To date we’ve concentrated almost exclusively 

on electrons, protons, and PMTs
 Some other nuclear targets are “along for the 

ride” and only a few others seem worthy of 
consideration
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The ideal SN detector would...
 Be reliable
 Target and detector would be stable and reliable for 

decades
 Low tech
 Good aging properties  longevity

 Be large and scalable
 Target and detector technology should be modular 

and easily expanded
 Have large neutrino cross-sections
 Very helpful
 Additionally, secondaries need sufficient mean free 

paths to permit detection
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The ideal detector would...
 Have diverse sensitivities to different reaction 

channels and the ability to tag those channels 
on an event-by-event basis

 Be able to measure the energy and direction of 
the SN neutrinos

 Have low background / noise levels above a 
threshold that permits reliable SNEWS alerts 
from the far-side of the galaxy, or much further.

 Be able to record the data without loss from the 
nearest conceivable SN
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There is no ideal detector(!!)

But how do the old standards stack up and 
where do the others worth considering fit it?

We’ll start with electrons, then protons, then 
the nuclei of potential interest.
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Electrons as targets
Elastic scattering (ES)
 Two diagrams – CC & NC
 The observable particle is an electron, detected through Cherenkov 

effect or scintillation
 All neutrino species participate in NC elastic scattering but only nu_e

participates in CC so ES is predominately nu_e sensitive (~87%)
 Strongly forward peaked
 Good statistical reconstruction of SN direction; ES is 3% channel on an 

isotropic background in water cherenkov detectors
 Energy information is challenging, unfolding energy spectrum is 

possible
 Detection via Cherenkov radiation is required to extract the direction
 Detection via scintillation has better energy resolution but energy 

spectrum is flat a featureless
 There is not yet a technology to replace PMTs on the scale of 

deployment associated with SN detectors
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Protons as targets
 Two reactions occur – inverse beta decay (CC), ν-p 

ES (NC) Beacom et al. Phys. Rev D66 (2002) 
033001

 Relatively speaking the cross-sections are high for 
both channels

 Energetic e+ (plus annihilation gammas) followed by 
delayed neutron capture is an excellent νe tag. 
Works well in liquid scintillator detectors and water 
Cherenkov with Gd. (Makodo Sakuda’s talk)
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Protons as targets
 IBD has good energy resolution and no 

directional information
 For liquid scintillator detectors ν-p ES offers the 

possibility add NC sensitivity to our list of tools 
for untangling the next galactic supernova

 The challenges are the low proton recoil 
energies; that these low energies are further 
quenched; and that the irreducible 14C beta 
decay spectrum obscures part of the proton 
recoil spectrum (Aldo Ianni’s talk)
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Comparative ν-nuclear 
cross-sections
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NC and CC excitation of 12C
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 Relevant to 
liquid 
scintiallators

 NC gives easily 
resolved 15.11 
MeV de-
excitation 
gamma



NC and CC excitation of 16O
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 Relevant for water 
Cherenkov detectors

 Level widths and 
water Cherenkov 
resolutions make 
these NC and CC 
induced transitions 
difficult to discern in 
the data
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 High Z increases νe CC cross-sections relative 
to νe CC  and NC due to Coulomb 
enhancement of electron wavefunction overlap.

 CC and NC cross-sections are the largest of 
any reasonable material

 Neutron excess (N > Z) Pauli blocks 

further suppressing the νe CC channel
 Results in flavour sensitivity complimentary to 

water Cerenkov and liquid scintillator detectors
Other Advantages
 High Coulomb barrier  no (α, n)
 Low neutron absorption cross-section (one of 

the lowest in the table of the isotopes
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Detection Technologies
 LAr eg. Icarus
 Large volume TPC
 58,000 channels of readout
 150 kV feedthroughs
 Cryogenic systems
 Potentially excellent flavour discrimination from topology
 Future directions: MODULAr 4 x 5 kT modules

 Increase TPC volume by factor of 8
 courser readout by factor of 6
 200,000 channels, 200 kV feedthroughs
 T600 from Gran Sasso to Cern after 2012

 Future directions: Glacier 100 kT
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Detection Technologies

 Lead-based detectors
 3He is excellent for high capture efficiency, low 

background
 National security concerns have dramatically 

increased cost of 3He to ~$20,000 per gram
 Large detector likely needs alternate technology
 Industry actually very active in developing 

commercially produced alternatives to 3He for 
Homeland Security applications
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HALO  - a Helium and 
Lead Observatory
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“Helium” – because of the availability of the 
3He neutron detectors from the final phase of 
SNO

+
“Lead”  – because of high ν-Pb cross-
sections, low n-capture cross-sections, 
complementary sensitivity to water Cerenkov 
and liquid scintillator SN detectors

HALO is using lead blocks from a decommissioned cosmic 
ray monitoring station

A “SN detector of opportunity” / An evolution of 
LAND – the Lead Astronomical Neutrino Detector, 
C.K. Hargrove et al., Astropart. Phys. 5 183, 1996.



Goals
 to provide νe (dominantly) and νx sensitivity to the SN 

detection community as soon as possible
 to build a long-term, high livetime dedicated supernova 

detector
 to explore the feasibility of scaling a lead-based detector to 

kT mass

Philosophy 
 Achieve these goals by keeping HALO

 Very low cost
 Low maintenance
 Low impact in terms of lab resources
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Philosophy



Design Overview
 Lead Array (79 +/- 1% tonnes)

 32 three meter long columns of annular 
Lead blocks

 864 blocks total at 91kg each
 Neutron detectors

 4 three meter long 3He detectors per 
column

 384 meters total length
 200 grams total 3He

 Moderator
 HDPE tubing

 Reflector (14 tonnes)
 15 cm thick graphite blocks

 Shielding (12 tonnes)
 30 cm of water
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Supernova signal 
In 79 tonnes of lead for a SN @ 10kpc†,

 Assuming FD distribution with T=8 MeV for νμ’s, 
ντ’s.

 68 neutrons through νe charged current channels
 30 single neutrons
 19 double neutrons (38 total)

 20 neutrons through νx neutral current channels
 8 single neutrons
 6 double neutrons (12 total)

~ 88 neutrons liberated; ie. ~1.1 n/tonne of Pb
†- cross-sections from Engel, McLaughlin, Volpe, Phys. Rev. D 67, 013005 (2003)

cf. ~49 events for 600 tonnes of LAr (ES: 8, νe : 3, νe : 38)

For HALO neutron detection efficiencies of 50% have been 
obtained in MC studies optimizing the detector geometry, the 
mass and location of neutron moderator, and enveloping the 
detector in a neutron reflector.
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HALO – March 2010



HALO – December 2010
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 SNO 3He 
detectors 
moved to HALO 
area (~400 m 
out of 700 m 
shown in the 
storage rack)

 Electronics and 
test stand also 
visible
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Cutting apart welded sections 
from SNO installation and 
adding new endcaps. Six 
months of careful work!

3He neutron detectors



Moderator
 Design optimized in 

Monte Carlo
 Last 16 moderator 

assemblies delivered 
to underground lab 
this week
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 Presence of the reflector 
improves the neutron capture 
efficiency as well as providing 
additional shielding against 
external neutrons

 In the event of a supernova 
the reflector helps to isolate 
and define the target volume

 Some further simulation work 
is required to justify the 
expense; in the meantime the 
design provides space for the 
installation of 15 cm of 
graphite graphite blocks 
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polypropylene shielding concept

 PP shielding installed 
under steel support 
structure

 12 tonnes of “water 
boxes” with voids filled 
with PS beads (1.3 
tonnes) ready for 
installation
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 As of Wednesday the moderator 
assemblies were in place in 
HALO. 

 Today 128 3He detectors will be 
inserted into place inside the 
moderator tubes.

 Cabling and readout for 8 
channels is in place to allow the 
start of systematic detector 
qualification runs

 Full readout and cabling should be 
in place by the end of September

 Following some benchmark runs 
without the external shielding the 
water shielding will be installed
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Towards a 
running detector



 A trigger condition of 6 neutrons in a 2 second window gives 
sensitivity out to ~20 kpc

 A background event rate of 150 mHz from all sources will 
randomly satisfy the trigger condition once per month. We take 
this as the target false alert rate for SNEWS

 Fast and thermal neutrons in SNOLAB occur at 4000 and 4100 
neutrons/m2/day respectively
 Water shielding reduces this to < 100 mHz of detected neutrons in 

preliminary measurements
 Water shielding plus graphite reflector provides another factor of 2 

decrease in the external neutron rates in MC
 Bulk α contamination in the CVD nickel tubes gives a negligible 22 +/-

1 detected neutrons per day in the whole array
 (α, n) reactions not simulated in the HALO GEANT MC but the 

threshold in Pb is 15.2 MeV
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Backgrounds and 
SNEWS



 Prior incorporation into HALO each neutron 
counter will be characterized with a 252Cf source

 The 252Cf source will be placed in multiple 
locations within and outside the detector to 
obtain data directly comparable to MC 
simulations

 The known neutron multiplicity of 252Cf permits a 
determination of the neutron capture efficiency 
independent of a precise knowledge of the 
source strength
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Calibration



 HALO will be complete and operating in 2011 
providing sensitivity to the νe and νx
components of a supernova

 HALO will participate in SNEWS once the 
behaviour of the detector is well understood

 Experience gained will feed into the design of 
a next generation detector taking advantage 
of the scalability of the lead plus neutron 
detector technology
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With assistance this past year from:
Kurt Nicholson – Guelph U.
Axel Boeltzig – TU Dresden 
Ben Bellis, Leigh Schaefer, Zander Moss  – Duke U.
Victor Buza, Olivia Zigler – U. Minnesota Duluth
Brian Redden – Armstrong Atlantic State U
Thomas Corona – U. North Carolina
Andre-Philippe Olds – Laurentian U.
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The HALO 
Collaboration



Conclusions
 With the addition of large Pb, LAr, and even an Fe 

detector we would be in much better shape for 
covering all neutrino flavours

 No one technology covers everything well
 LAr has great potential for providing quality 

information in ES, CC and NC channels but the level 
of technical challenge is not clearly well matched to 
a SN detector

 We should continue to take advantage of 
opportunities that arrive and advocate for 
maintaining SN sensitivity in future large-scale 
detectors.
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